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We develop a stable scheme for full spin projection of an unrestricted Hafimek wave function using
ideas originally discussed by alin and Harriman. We examine three test cases within the intermediate
neglect of differential overlap/spectroscopic method (INDO/S); a model of ferredoxits Bazyme models

for nitratases, and Niclusters. The projected INDO/S UHF method has a remarkable ability to predict spin
multiplicities correctly and with far greater ease than corresponding restricted open-shell Hadcke
calculations followed by configuration interaction (ROHF/CI).

Introduction wave function are often not good. Again, a dramatic example
is the case of Grwith a long bond length of about 3.25 A
obtained at a much lower energy than the ROHF minimum
energy structure at about 1.64 A, which is about the right bond
length. There are now many examples of failures of the UHF
model to predict properties.
We would like here to re-examine the UHF method within
the intermediate neglect of differential overlap (INDO) model
&Sty 2S+1 parametrized for spectroscopy, (INDO/S). The UHF procedure
s lpSz_ SS+1) lpsz @ is very efficient compared to the equivalent cases treated by
R the ROHF method, again, especially in those cases where there
where B+ 1 is the multiplicity. Sinces? commutes with the  are many open shells. The INDO/S model is a very effective
Hamiltonian typically assumed in the Hartreock procedure,  one for calculating the electronic structure of very large systems,
this is a comfortable constraint and leadspectroscopistates,  put this efficiency can be partially lost if an ROHF calculation
singlets, doublets, etc. must be followed by an extensive open-shell configuration

A second way to proceed is to use the unrestricted Haftree interaction (CI) calculation to sort out the various spin states,
Fock method (UHF}'°In such a case, different orbitals are  their relative energies, and their properties.

Quantum chemical calculations on open-shell systems, es-
pecially when there are many open shells, present particular
problems. There are, in general, two ways to proceed. The first
is to use the restricted open-shell Hartr€®ck modelk—8 which
creates eigenstates of the spin-squared oper&forwith
eigenvalue§S + 1), e.qg.,

obtained for different spins (DODS},but the wave function UHF calculations can be followed by MgllePlesset type
is no longer an “eigenfunction of spin” or, more correctly, Spin  pertyrhation theory, and this is now a reasonably efficient
squared. In general, proceduré, but this treatment does little to improve the spin
contamination when there are many open shells. Various
& hf hf . . [T .
S APz (s, + 1)y 2) projection and annihilation schemes have been introduced to

correct some of the major problems. Some have been more
The subscrips, designates that both the ROHF and UHF wave successful than others, but none are capable of definitively

functions are eigenfunctions & by construction, with eigen-  improving the results.
valueS, equal to the sum of the spin molecular orbgaValues; Below we examine the fully projected UHF method (PUHF).
i.e., %, for a-spin andY/; for B-spin. This procedure seems to leaddatstandingrelative energies

The UHF energy is generally lower than that obtained from of the various possible spin states when used within the INDO/S
the ROHF model, a consequence of the greater variationalmethod. The PUHF technique has, in general, been somewhat
freedom to choose two sets of orbitals, ify’} and{cpﬁ, neglected based on the findings that this procedure often did
rather than requiring the spin-pairing of electrons in closed- not give spin densities in accord with that inferred from ESR
shell orbitals. This difference can become rather dramatic when Studies and the fact that most procedures used in this scheme
there are many open shells. A particularly interesting example were unstable. This instability was initially also a problem for
is met with the Cg dimer. In this case, the UHF antiferromag- Uus but has been eliminated in the procedure we describe, that
netically coupled energy (six up-spin electrons localized on one is, by adopting the paired orbitals of walin and the formalism
Cr atom, one in the 4s and one in each of the five 3d orbitals, originally suggested by Harriman.
and six down-spin electrons on the other Cr atom) is some 4000 Other open-shell techniques have also been described in the
kd/mol lower in energy than the ROHF covalent bonded literature. One, the SUHF procedure of Handy and co-worKers,
structuretl~13 uses a Lagrange constraint, i. (& — S+ 1)), in the two

Despite the energy advantage that the UHF procedure hasUHF Fock operators to transform the UHF solution to the ROHF
over the ROHF method, the properties calculated with the UHF solution with increasingl. Although this allows one to use
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perturbation theory of the UHF type to refine the energy with A
less spin contamination, it offers no advantage at the HF level
and vyields a solution bounded in energy between that of the Sy
UHF result and the corresponding ROHF result.

Another interesting technique is the half projected Hartree
Fock, HPHF, method>16 By construction, this method elimi-
nates half of the spin contaminants through the construction of
a two-determinant wave function. This construct is only defined Sy
for an even number of electrons. There are often multiple E
solutions to the resultant equations, and the method suffers from N

kg

convergence problems. Although some of these convergence g Ty
problems have been addressed by Bone and Pulay G
restricting the wave function to two determinants of the form Y
(for singlets and triplets)
_ 1 a B B a Sy
¥ =—"(lp1a(1)¢15(2) . . . [£lPia(D)g1p(2) . . 1) (3)

\/E S¢
the HPHF energy lies above the corresponding UHF energy 3
and considerably above the PUHF energy. These orbitals are, ¥ 3y

however, convenient for a subsequent Cl treatment as shown
by Bone and Pulay. Nevertheless, we suspect that they are no ROHF UHF PUHF
more convenient than are the natural orbitals obtained from the
UHF wave function, although we have not yet examined this. Figure 1. Energy of the UHF wave function compared to ROHF and

It is also possible to annihilate the next “higher” spin  5iected UHF for the case of a ground-state triplet. Note that the UHF
component of the UHF wave function, e.g., remove only the function contains information about many ROHF states ®{ROHF)
triplet component from an open-shell singlet, and renormalize > S,

the resultant wave function. This is a quick and efficient method )
but is reliable only in the cases where there is little spin These Fock operators differ from the closed-shell case by

contamination and only in the case of maximum multiplicity different exchange operators; that is, only electrons of like-spin
for a given open-shell situation. We review this method in the ¢an exchange.

next section. N -
@t = h, + Z[F’UMGIMD— Po oAl (8)

Unrestricted Hartree—Fock (UHF)

The unrestricted HartreeFock (UHF) wave functioh® can where
be written as
5= 9 M Cia Coa (9)
(MY = | gAB(LPEAR) - . PeBNTaN, + 2
Dpaa(Ng +2) ... gpoN, + Ng)| (4) with similar expressions foPf. In eq 9,n® (and ¥ in the
analogous equation fd?’) equals 0 or 1. The total density is
whereN, is the number ob-spin electrons anblg the number defined as
of B-spin electrons, the total number of electrors N, + N,
B0= Yo(Ny — Ng), and we assume tha&t, = Ng. The || P’ =p*+ P’ (10)
denotes a Slater determinant. ) o _
As is apparent from eq 4, UHF theory defines two different @nd the spin density is similarly defined as
sets of spatial orbitals, one for tlespin electrons{ ¢}, and
one for thef-spin electrons{(piﬂ}, i.e., different orbitals for
different spins'® The a-spin orbitals are orthonormal as are the

p=P*—P’ (11)

Inevitably, the UHF method leads to lower energies than does

f-spin orbitals, but they are ndorthogona i.e., either of the RHF or ROHF methods (see Figure 1.) and
a@ o 5 annihilating the components of higher multiplicities generally
(i g = 6ij’ Ly |y U= 5ij yields even lower energies. The UHF method is variational and
it is a Fock type method, but for the reasons given above it
but does contain some of the correlation energy definition.
Iijoﬁ(pjﬂ[}i IZjoiﬁkp]-uDi 0 (5) Projection

. . _ o . The UHF wave functiorbreaksspin symmetry; that is, the
in general. Invoking the variational principle for this wave ;i \vave function is not an eigenfunction of tB2operator,

fundctlt(])n y|elds(;V\f/o FﬁCk eqlfjatl.orlsléo'ne for thespin orbitals 1y ¢ it can be expanded in terms of spin eigenfunctions that span
and the second for those gfspinli8vis., the same space, Vis.,

()¢ () = ¢ (i) (6) e S N, -
Twl= % 0y c(ssn * 12
KOIAORERA0) @) 2= 2 02 GSSN s a2



Projected Unrestricted Hartre&ock

The
s = N[00, . .. 0y 0,0, . .. 6y [[a" B la'BY ]
o 4
(13)
where
N_\/N,\1-12
N==[(Na+-h%ﬁ(k“)(kﬁ)] (14)

The function fN«%gK is the sum of all theNy-factor spin
function products involving th&l, — k a-spin functions and
B-spin functions; e.g., iN, = 3 andk = 1, then p?8Y| = aap
+ ofa + Baa. The|oXBNs7X] are similarly defined. This leads
to [aNaKBK akBNs—K] being a sum o('\ll(“)(l\ll(ﬁ) terms each oNy
o-spin functions and\g $-spin functions. TheCi(SS,,n) and
wswere first determined by Sasaki and OHfidhe expressions
for evaluatingE(?&W+1ys) were derived by Harrima#f; 22
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the resulting pure spin state wave function can be written as a
linear combination of configuration state functions, vis.,

N

Ng
O5Mwel= 5 Cussn =g (20)
K=

when the{2S"1yX} are expressed on the basis of the corre-
sponding orbitals of Amos and Ha#.

Harriman, through a great deal of tedious algebra, derived
closed formulas for the projected energy expressi®mgiich
we have no desire to repeat here. Further, he proved that upon
projection the natural orbitals of the 1-matrix do not rotate and
so chose to express his energy formulas in this basis. As noted
above in the basis of the corresponding orbitals (also known as
the paired orbitals of Lwdin), the unrestricted wave function
can be expressed as a linear combination of restricted determi-
nants, obviously a far more transparent basis in which to

and we have adopted his notation in the above discourse. Theyngerstand the result of applying the projector. The correspond-

squares of thes are known as the weights of the components
and for a normalized wave function will sum to unity. Then,
from the definition of thews it is easily shown that

N/;

B = Zw;k@ +RES+k+1)=S(S+1) (15
k=

and
Ng

E(zsﬂq,gzm) — Zw;—kE(z@mH W Sz) < E(ZSZ+11p:Z1f) (16)
k=

The functions?& ™1y are akin to Cl functions, eq 13, thus
the UHF energy contains some of the correlation energy; i.e.,
the difference between the many-body solution for the nonrela-
tivistic fixed nuclei Hamiltonian and the RHF, or ROHF, method
defines thebasis setorrelation energy. For a complete basis,
this difference defines the correlation energy.

The Lowdin annihilato?®~28 for removing thet-th spin
component is given below.

& —t(t+1)
+1) — t(t+ 1)

A= )

If we assumd is the leading spin contaminant, usually the
S, + 1 component, then

(—YAS, + 25 W Ceyp +. .. (18)

A more complete, although more complex, appropobjects

the desired spin state from the UHF wave funcbr2.29-31
To obtain an eigenfunction &, the Lowdin projectorQs is

applied to eq 12, to remove all but teepin component, where

0,= D A (19)

and

S0, = g5+ 1)0,

The operatofs projects out theZS+ 1) spin component and

ing orbitals can be generated in several different ways; we have
found that generating them via the pairing theorem o#vto
din3%31and constructing the natural orbitals of the 1-matrix from
them yields a set of natural orbitals that both properly reflects
the spatial symmetry of the system and possesses the proper
phasing, a problem first noted by Phillips and ScFu@ur use

of any other method to obtain the natural orbitals of the 1-matrix
inevitably leads to problems, especially for systems of high
spatial symmetry, thus rendering whatever utility there was in
the alternate method useless. In the Appendix, we demonstrate
Loéwdin’s pairing theorem by using it to generate the paired (or
corresponding) orbitals.

In practice, problems arising from spatial symmetry, near
degeneracies in the 1-matrix, and machine numerical precision
have caused sufficient problems in the past to discourage the
general use of this method. Machine precision problems must
be trapped and dealt with as they arise. Problems arising due
to spatial degeneracies and near degeneracies in the 1-matrix
were successfully met by using the pairing theorem.

Computational Algorithm

(1) Converge UHF equations to 1 part in'4@vith respect
to the energy. (This is important for both reasons of numerical
stability and to ensure a minimum of spin contamination.)

(2) Form the corresponding orbitals via the algorithm
described in the Appendix.

(3) Construct the natural orbitals of the 1-matrix from the
corresponding orbital® (This ensures their being properly
phaseé and resolves the problems commonly encountered
when treating molecular systems of high spatial symmetry.)

(4) Use the equations given in ref 23 or 36 to compute the
weights and energies for each spin state of interest. (Equation
16 can be used as a check of internal consistency when the
weights and energies of all spin states are computed.)

Some Examples

The projected UHF model delineated above has been
programmed within the quantum chemical models that are
present in the ZINDO program systéfThe examples taken
below were obtained using the INDO/S model Hamiltor#as®

Model Ferridoxins. We examine the case of the 2-Fe model
ferrodoxir?® shown in the structure above Table 1. The= 5
UHF calculation (corresponding to all Ospin electrons singly
occupying the 10 d-orbitals, éerromagnetically(FM) coupled)
is nearly pure undectet &+ 1 = 11), as can be seen in Table
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TABLE 1: Spin Components (“Weights”) for 2-Fe Model
Ferredoxin Obtained from UHF Calculations in ltalics2

Cory and Zerner

TABLE 2: Relative Energies of the Fe-S Model Proteins
for Nitrile Hydratase (NHase) R—CN + H,0O —
R—CO—NH; in kd/mol (from ref 35)

HS ,, \SH
J v DABMUOQ, C16H14CIFEN:S; (S(exp)= 3/2)
HS ’F \S /F chloroN,N'-ethylenebis(thiosalicylideneiminato)] Fe(lll)
S=1/2 67.2
S S=3/2 0.0
2S+1 5 4 3 2 1 0 S=sl2 373
PAVDUL, C39H54N3&Fe (S(exp)z 1/2)
]éW 83)-8 (1,4,7-tris(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane)Fe(lIl)
3w 049 037 S=112 0.0
E 261 025 S=3/2 501
5w 081 036 029 S=5/2 27
E 225 27.6 0.76 ZAZNUJ, FeGN3CosH24 (S(exp)= 5/2)
7w 0.88 0.18 0.13 0.13 [Fe{ 111} (N(CH2-0-C6H4S)3)(1-Me-imid)]
E 135 22.9 30.5 1.60 —
S=1/2 110.8
9w 0.93 0.11 0.01 0.02 0.03 S=3/2 22.6
E 5.76 27.7 25.2 36.1 2.86 S=5/2 0.0
11w 0.9993 0.07 0.00 0.00 0.00 0.00 ZEKRIGE), CrHaNaS,CIFe Sexp)= 112)
, C16M33Ns € S exp)=
ng 83307 2‘(1)'.%0 450'.%0 3%%0 7%'.%0 %%‘E’) bis(6-amino-2,3-dimethyl-4-azahex-3-ene-2-thiolato)Fe(lll) chloride
E 56.7 82.1 105.0 97.7 126.2 64.8 S=1/2 0.0
S=23/2 59.1
(®0 30.008 20.66 12.95 7.26 511 4.72 S=5/2 96.6
S(S+1) 30 20 12 6 2 0
E(UHF) 3.57 6.48 15.3 22.8 272 0.63  general the UHF energy for the highest multiplicity is a good
[RIAF =5 estimate (the projection only lowers the energy by 30t

AF = 0.160 (singlet}t 0.357 (triplet)+ 0.298(quintet)

aThe second line presents relative energies in 1000 ¢b000 cn1?
= 2.86 kcal/mol).

this case) this does not necessarily imply that the wave function
is good though the[®Ovalue does suggest that this is so in

this particular case. There are two additional observations to
be gleaned from this table. The first is that the tridectet is of

1. The pure undectet comprises 0.9993 of the wave function, much higher energy, as it requires the uncoupling of spins on

and the[&, Jexpectation value is 30.008. If the UHF wave

the sulfur ligands. Second, only the AF (minimum multiplicity)

function were a pure undectet, this value would be identically and FM (maximum multiplicity) seem consistent in their
30. The lowest energy multiplet for this system that we calculate prediction. This is because all other multiplicities involve the
using the INDO/S model is, however, the singlet case. This is loss of one-center exchange, and this raises the energy consider-

obtained from projecting out thg = 0 antiferromagnetic (AF)
case, with alla-spin electrons localized to one Fe(lll) ion and

ably. The prediction that the FM case projected from the singlet
is higher in energy than the AF case by 4840&is consistent

all B-spin electrons localized to the other. (Note that the with the FM calculation which produces a value of 3540 ¢&m

“singlet”, i.e.,S, = 0, UHF wave function is mostly 8= 1, S,

Finally, note that, despite the considerable spin contamination

= 0 triplet.) The AF case cannot be considered a pure spin state,in the AF case, the spin projection only lowers the projected

nor does it even approximate one. The expectation veitie

of a pure AF coupling would be 5, which is close to the 4.72
value actually calculated for the UHF wave function. At the
bottom of Table 1, the exact projection of the AF wave function,
vis.,

Wk, = I9a(L)g5a(2)p5a(3)pga4)p5a(5)

DRBB)PB(T)PRBB)PaB(O)iB(10) (21)

(in which the first five MO’s are essentially Fe d-orbitals
localized to the first iron atom and are representedkspin
orbitals, and the next five MO’s arg-spin orbitals localized

singlet by 630 cm?. This is due to the fact that the higher
multiplicities that mix into this wave function are the weakly
coupled ones; that is, those that result from the coupling of two
isolatedS = %/, Fe(lll) systems.

FeS Proteins, Nitrile Hydratases.In Table 2, we examine
the magnetic predictions of several model nitrile hydratases,
the latter of which catalyze the reaction

R—CN + H,0— R—-CO—NH,
These are rather complex molecules, as implied by the formulas

given in the table. We note that in each case the predicted spin
multiplicity agrees with that observed. In the case of ZAZNUJ,

essentially to the second iron atom) is compared against thethis is high spin ¥,), and in the case of PAVDUL (Figure 2),
undectet, the nine nonets, etc. A comparison of these coefficientsthis is low spin {/;). The values in this table are from three
with those actually calculated indicates a slight bias in the UHF INDO/S—PUHF calculations, one for each of the th&ealues,

function to lower multiplicities than that expected in the ideal
AF case, consistent with the fact that the calculdf®dvalue

1,5, 3l,, and®/,. For the two cases presented here, the unprojected
UHF result properly predicts the observed spin state (this is

is less than 5. This is likely due to some covalency in the not generally the case), indicating that the essential physics is
d-orbitals, and these more delocalized orbitals have a greaterinherent in the INDO/S model. This is not the case for ab initio
tendency to electron pair. In general, the UHF energy is most UHF wave functions and is the major reason for their poor
reliable for those states of highest multiplicity for a given description of spin systems such as these. The projection is
number of electrons in a set number of open-shell orbitals. usually necessary to predict the obseni@4lvalues® (The

Accordingly, the calculate@?Cvalue deviates more from the
S(S; + 1) value the smalle§, becomes.

As shown in Table 1, the prediction is that the ground state

of this model ferridoxin isdiamagnetic,or singlet. While in

chemistry of these complexes is discussed in detail in ref 40,
and many more examples are reported.)

Single Sided AnnihilatianSingle sided annihilation is an
attractive alternative to fully projected unrestricted Hartree
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Figure 2. Structure of “PAVDUL", 1,4,7-tris(4tert-butyl-2-mercap-
tobenzl)-1,4,7-triacyclononane Fe(lll).

TABLE 3: Examination of the UHF Wave Function for
PAVDUL; See Table 2 and Figure 2

S weight energy (au)
0.5 0.53041104 —344.975524
15 0.34766091 —344.905468
25 0.10235863 —344.819873
3.5 0.01749960 —344.723620
4.5 0.00192041 —344.617574
5.5 0.00014193 —344.500787
6.5 0.00000722 —344.370987
7.5 0.00000025 —344.224453

unprojected® = 2.925766
E(UHF) = —344.930067

Results for Half-Projection

expectation value of the total spin operat§(S+ 1) 0.750000
[&0of the UHF wave function 2.925766
expectation value of the annihilated wave function 8.525535
estimated weight of the annihilat&k= %, component 0.402225
estimated weight of th& = 5, component 0.057898
energy of the UHF wave function —344.930067

energy of the one sided annihilated wave function —345.647713

aThe reference calculation h&™™ = 1,

Fock (eq 17) as it is simpler and much easier to implement,
considerably faster in execution time, and is readily available
within the INDO model and has been for some tithaVe

examine this method for PAVDUL (Figure 2), one of the model

J. Phys. Chem. A, Vol. 103, No. 36, 1992291

TABLE 4: Examination of the UHF Wave Function for
PAVDUL; See Table 2 and Figure 2

S weight energy (au)
25 0.77636908 —344.947771
3.5 0.19065137 —344.870643
4.5 0.02969825 —344.781132
55 0.00305902 —344.679032
6.5 0.00021207 —344.562230
7.5 0.00000990 —344.426477
8.5 0.00000031 —344.264844

unprojected®= 10.651375
E(UHF) = —344.927206

Results for Half-Projection

expectation value of the total spin operat§(S$+ 1) 8.750000
[($0of the UHF wave function 10.651375
expectation value of the annihilated wave function 10.708589
estimated weight of the annihilat&= 7/, component 0.193270
estimated weight of th& = %/, component 0.026896
energy of the UHF wave function —344.927206
energy of the one sided annihilated wave function —345.070011

aThe reference calculation h&"™ = 5/,

TABLE 5: Relative Valence Energies (eV) Calculated for
Nig Structures from PUHF and MRCIS Calculations at the
Bulk Geometry (Op, R = 2 49 A), Symmetry Constrained
Optimized Geometry (On, R = 2.36 A) and the Jahn-Teller
Distorted Da, Structures®b

multiplicity Op, R=2.49A 0, R=236A Dn

1 1Ay 1Ay 1Byq
PUHF 0.43(0.158)  0.63(0.160) 0.27 (0.160)
MRCI 4.63 2.83 3.21

3 3T2u 3T2u 3BZu
PUHF 0.57 (0.407)  0.33(0.409) 0.38 (0.408)
MRCI 3.16 1.22 1.71

5 Az Az 5Byg
PUHF 0.27 (0.589)  0.14 (0.596) 0.22 (0.600)
MRCI 2.78 1.09 0.79

7 "Agg "Agg "Byg
PUHF 0.11(0.736)  0.027 (0.746)  0.027 (0.748)
MRCI 0.95 1.14 1.12

9 %Azg %Azg ®Big
PUHF 0.027 (0.854)  0.0082 (0.863) 0.0054 (0.864)
MRCI 0.30 0.30 0.68

11 llE 11E 11A
PUHF 0.000 (0.952)* 0. 000 (0.963)* 0. 000 (0.963)*+*
MRCI 0.000 0.006% 0.000##
13 13A2g 13E 138,

PUHF 0.38 (0.994) o 57 (0.996) 0.52 (0.997)
MRCI 0.54 17 1.71

2The numbers in parentheses are the weights of the given multiplicity
from the Sz= S UHF calculation® MRCIS absolute energy values:
(#) —244.224 au; (##)-244.295 au; (###)-244.300. PUHF absolute
energy values: (*)-244.229 au; (**)—244.372 au; (***)—244.396
au. 1 au= 27.2114 eV.

nitrile hydratases of Table 2. In this case, the expectation value spin contamination, but as seen in Table 4 for PAVDUL even

[&0= 2.926 for the UHF solution witls, = /5, showing a
rather large amount of spin contamination for a function with
desired®0= 0.75. Single sided annihilation and renormaliza-
tion, a procedure which eliminates the quartet compof#it

= 15/, yields a value of %= 8.526, indicating that the doublet

remains a minor component of the wave function that results.

this is not always the case. This is somewhat disappointing, as
after the annihilation and renormalization the wave function is
95.8% sextet$, = 5/,). This is not only disappointing, it is
surprising!

Ni Clusters. As a final example, we examine the energetics
of Nig clusters. Table 5 summarizes our findings for this cluster

The energy obtained, a transition value rather than an expecta-at three different geometrie©, symmetry at the observed bulk

tion value, is 1837 kJ/mol below the PUHF value, and the

distance of 2.49 A, the INDO/1 optimized geometry constrained

estimated error from second-order perturbation theory is 0.226919-t0 O, symmetry, and the INDO/1 optimized Jahfeller

(E(S9) — E(S+ 2)), rendering this value meaningless. An analysis

distorted geometry oD4, symmetry*! The INDO/S-PUHF

of this particular case appears in Table 3. Note the high spin calculations are as described above; the multireference CI

contamination; the UHF wave function is only 53% doublet.

(MRCI) calculations generate single excitations from all sym-

Single sided annihilation of the next highest component is a metry-equivalent configuration state functions for each spin and

useful procedure only when the wave function shows but little

space assignment and are reasonably time-consuming calcula-
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tions involving several thousand configurations in each of the s =a'
irreducible representations in the Abelian subgrd@up.
The undectet (8+ 1 = 11) is predicted to have the lowest gt =pty

energy in all cases, although the PUHF calculations suggest that
multiplicities of 7, 9, and 11 are essentially degenerate, i.e., are going to be diagonal, leading to a natysalring of the
within a kcal/mol (1 hartree= 627.58 kcal/mol), with the  basis functions.
exception being the septet at the bulk geometry that lies 2.5 Consider the two product matric&S" and S'S, which are
kcal/mol above the PUHF undectet. The MRCI calculations Hermitian and of dimensiom x mandn x n, respectively.
separate the energies of the multiplets by a greater amount. In(Iff m > n, thenSS’ has at leastn — n eigenvalues equal to
all cases, the PUHF calculations yield a lower energy than do zero.) Then there exists a unitary matkixsuch that
the far more complex MRCI calculations. At the bulk geometry, et
this difference in energy is only 3 kcal/mol, but it increases to V (SHV=u
nearly 6 kcal/mol at the other geometries. In other words, it is
quite difficult for the ROHF-CI procedure to produce energies
as low as those easily obtained from the PUHF procedure.

Analysis indicates that the PUHF results are more systematic
than are those of the MRCI calculations in the sense that a
Heisenberg spin Hamiltonian can be fit to the results obtained U = svy 12
for each geometry with a standard deviation of 0.002 hartree
compared to 0.02 hartree for each MRCI structure. Of curiosity where
is the observation that these fits suggest that the lowest
multiplicity predicted from the PUHF calculations is the septet; U'u =u YA/ svu 2=y Yu 2 =
the undectet remains the lowest energy from the fits to the MRCI
calculations, although the nonet becomes nearly degenerate. and

For comparison, DFT calculations on the distortBd,
structure predict that a multiplicity of 7 lies lowethut density u'sv=u's'sv=uu=u"
functional theory has recently been shown to favor lower
multiplicities** CASSCF/CI calculations at the bulk geometry
seem to also suggest that a septet lies lowest in erférgy.

whereu is diagonal, and for the sake of simplicity assumed to
be of dimensiom x n (i.e., no vanishing eigenvalues). Alsp
> 0 sinceS'S is positive definite.

Now let us define

nxn

If for convenience we define

T, =u”

Conclusions then
We have re-examined the projected UHF procedure as an

inexpensive tool to obtain pure spin states, following the (3 |b[= T, 0,

procedure originally delineated by Harriman and stabilized by

use of the pairing theorem of "kalin. We develop a robust and

procedure that is very capable of yielding correctly the spin B|a0=T.0

multiplicities of open-shell systems. The energies we obtain are r rers

difficult to match using ROHFCI procedures. Although the

wave functions we obtain “seem” to be much improved over case of the mirror theorefi2529

that of the UHF mode_l, we still h_ave very little experience with The value of the overlafi, ranges between 8 T, < 1. If T,
the performance of this model with respect to other observables. _ | thena; = b! and corresponds to a doubly occupied orbital
’ r

with no paring properties. Those orbital pairs havihg< 1
are referred to as the corresponding orbitals of Amos andHall

which is the pairing theorem. (The pairing theorem is a special

Appendix: The Paired Orbitals of Lowdin

Let us consider the two sets of basis functions or the paired orbitals of vwdin. Them — n extra eigencolumns
of SS, associated with the-n zeroeigenvalues, are of zero

a={la0laL....la 3 length.
b= {lb,0[b0..., b, Acknowledgment. This work is supported in part through

_ . a grant from the Office of Naval Research. We are very grateful
of ordermandn, respectively, wittm > n. Further, we assume  for useful discussions with Dr. Nigel Richards (University of
the sets to be orthonormal. Then one has the overlap integralFiorida) and Dr. Guillermina Estiu (LaPlata). Many of these

matrixes calculations were performed on the IBM SP2 available at the
. Quantum Theory Project at the University of Florida, obtained
Sxn=2ab from an IBM SUR Grant.
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