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We develop a stable scheme for full spin projection of an unrestricted Hartree-Fock wave function using
ideas originally discussed by Lo¨wdin and Harriman. We examine three test cases within the intermediate
neglect of differential overlap/spectroscopic method (INDO/S); a model of ferredoxin, Fe-S enzyme models
for nitratases, and Ni6 clusters. The projected INDO/S UHF method has a remarkable ability to predict spin
multiplicities correctly and with far greater ease than corresponding restricted open-shell Hartree-Fock
calculations followed by configuration interaction (ROHF/CI).

Introduction

Quantum chemical calculations on open-shell systems, es-
pecially when there are many open shells, present particular
problems. There are, in general, two ways to proceed. The first
is to use the restricted open-shell Hartree-Fock model,1-8 which
creates eigenstates of the spin-squared operator,Ŝ2, with
eigenvaluesS(S + 1), e.g.,

where 2S + 1 is the multiplicity. SinceŜ2 commutes with the
Hamiltonian typically assumed in the Hartree-Fock procedure,
this is a comfortable constraint and leads tospectroscopicstates,
singlets, doublets, etc.

A second way to proceed is to use the unrestricted Hartree-
Fock method (UHF).1,9,10 In such a case, different orbitals are
obtained for different spins (DODS),10 but the wave function
is no longer an “eigenfunction of spin” or, more correctly, spin
squared. In general,

The subscriptsz designates that both the ROHF and UHF wave
functions are eigenfunctions ofŜz by construction, with eigen-
valueSz equal to the sum of the spin molecular orbitalsz values;
i.e., 1/2 for R-spin and1/2 for â-spin.

The UHF energy is generally lower than that obtained from
the ROHF model, a consequence of the greater variational
freedom to choose two sets of orbitals, i.e.,{æi

R} and {æi
â},

rather than requiring the spin-pairing of electrons in closed-
shell orbitals. This difference can become rather dramatic when
there are many open shells. A particularly interesting example
is met with the Cr2 dimer. In this case, the UHF antiferromag-
netically coupled energy (six up-spin electrons localized on one
Cr atom, one in the 4s and one in each of the five 3d orbitals,
and six down-spin electrons on the other Cr atom) is some 4000
kJ/mol lower in energy than the ROHF covalent bonded
structure.11-13

Despite the energy advantage that the UHF procedure has
over the ROHF method, the properties calculated with the UHF

wave function are often not good. Again, a dramatic example
is the case of Cr2 with a long bond length of about 3.25 Å
obtained at a much lower energy than the ROHF minimum
energy structure at about 1.64 Å, which is about the right bond
length. There are now many examples of failures of the UHF
model to predict properties.

We would like here to re-examine the UHF method within
the intermediate neglect of differential overlap (INDO) model
parametrized for spectroscopy, (INDO/S). The UHF procedure
is very efficient compared to the equivalent cases treated by
the ROHF method, again, especially in those cases where there
are many open shells. The INDO/S model is a very effective
one for calculating the electronic structure of very large systems,
but this efficiency can be partially lost if an ROHF calculation
must be followed by an extensive open-shell configuration
interaction (CI) calculation to sort out the various spin states,
their relative energies, and their properties.

UHF calculations can be followed by Møller-Plesset type
perturbation theory, and this is now a reasonably efficient
procedure,1 but this treatment does little to improve the spin
contamination when there are many open shells. Various
projection and annihilation schemes have been introduced to
correct some of the major problems. Some have been more
successful than others, but none are capable of definitively
improving the results.

Below we examine the fully projected UHF method (PUHF).
This procedure seems to lead tooutstandingrelative energies
of the various possible spin states when used within the INDO/S
method. The PUHF technique has, in general, been somewhat
neglected based on the findings that this procedure often did
not give spin densities in accord with that inferred from ESR
studies and the fact that most procedures used in this scheme
were unstable. This instability was initially also a problem for
us but has been eliminated in the procedure we describe, that
is, by adopting the paired orbitals of Lo¨wdin and the formalism
originally suggested by Harriman.

Other open-shell techniques have also been described in the
literature. One, the SUHF procedure of Handy and co-workers,14

uses a Lagrange constraint, i.e.,λ(Ŝ2 - S(S + 1)), in the two
UHF Fock operators to transform the UHF solution to the ROHF
solution with increasingλ. Although this allows one to use

Ŝ2 2S+1ΨSz
) S(S+ 1) 2S+1ΨSz

(1)

Ŝ2 2Sz+1Ψsz

uhf * Sz(Sz + 1)2Sz+1Ψsz

uhf (2)
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perturbation theory of the UHF type to refine the energy with
less spin contamination, it offers no advantage at the HF level
and yields a solution bounded in energy between that of the
UHF result and the corresponding ROHF result.

Another interesting technique is the half projected Hartree-
Fock, HPHF, method.15,16 By construction, this method elimi-
nates half of the spin contaminants through the construction of
a two-determinant wave function. This construct is only defined
for an even number of electrons. There are often multiple
solutions to the resultant equations, and the method suffers from
convergence problems. Although some of these convergence
problems have been addressed by Bone and Pulay17 by
restricting the wave function to two determinants of the form
(for singlets and triplets)

the HPHF energy lies above the corresponding UHF energy
and considerably above the PUHF energy. These orbitals are,
however, convenient for a subsequent CI treatment as shown
by Bone and Pulay. Nevertheless, we suspect that they are no
more convenient than are the natural orbitals obtained from the
UHF wave function, although we have not yet examined this.

It is also possible to annihilate the next “higher” spin
component of the UHF wave function, e.g., remove only the
triplet component from an open-shell singlet, and renormalize
the resultant wave function. This is a quick and efficient method
but is reliable only in the cases where there is little spin
contamination and only in the case of maximum multiplicity
for a given open-shell situation. We review this method in the
next section.

Unrestricted Hartree-Fock (UHF)

The unrestricted Hartree-Fock (UHF) wave function1,9 can
be written as

whereNR is the number ofR-spin electrons andNâ the number
of â-spin electrons, the total number of electronsn ) NR + Nâ,
〈Ŝz〉 ) 1/2(NR - Nâ), and we assume thatNR g Nâ. The |‚‚‚|
denotes a Slater determinant.

As is apparent from eq 4, UHF theory defines two different
sets of spatial orbitals, one for theR-spin electrons,{æi

R}, and
one for theâ-spin electrons,{æi

â}, i.e., different orbitals for
different spins.10 TheR-spin orbitals are orthonormal as are the
â-spin orbitals, but they are notbiorthogonal, i.e.,

but

in general. Invoking the variational principle for this wave
function yields two Fock equations, one for theR-spin orbitals
and the second for those ofâ-spin,1,18 vis.,

These Fock operators differ from the closed-shell case by
different exchange operators; that is, only electrons of like-spin
can exchange.

where

with similar expressions forPâ. In eq 9, nR (and nâ in the
analogous equation forPâ) equals 0 or 1. The total density is
defined as

and the spin density is similarly defined as

Inevitably, the UHF method leads to lower energies than does
either of the RHF or ROHF methods (see Figure 1.) and
annihilating the components of higher multiplicities generally
yields even lower energies. The UHF method is variational and
it is a Fock type method, but for the reasons given above it
does contain some of the correlation energy,by definition.

Projection

The UHF wave functionbreaksspin symmetry; that is, the
UHF wave function is not an eigenfunction of theŜ2 operator,
but it can be expanded in terms of spin eigenfunctions that span
the same space, vis.,

Ψ ) 1

x2
(|æ1

RR(1)æ1
ââ(2) . . . |(|æ1

âR(1)æ1
Râ(2) . . .|) (3)

(NR-Nâ)+1Ψuhf ) |æ1
ââ(1)æ2

ââ(2) . . .æq
ââ(Nâ)æ1

RR(Nâ +

1)æ2
RR(Nâ + 2) . . .æp

RR(NR + Nâ)| (4)

〈æi
R|æj

R〉 ) δij, 〈æi
â|æj

â〉 ) δij

〈æi
R|æj

â〉 * 〈æi
â|æj

R〉 * δij (5)

fR(i)æj
R(i) ) εj

R æj
R(i) (6)

fâ(i)æj
â(i) ) εj

â æj
â(i) (7)

Figure 1. Energy of the UHF wave function compared to ROHF and
projected UHF for the case of a ground-state triplet. Note that the UHF
function contains information about many ROHF states withS(ROHF)
g Sz.

〈µ| f̂ R|ν〉 ) hµν + ∑
σ,λ

[Pσλ
T 〈µσ|νλ〉 - Pσλ

R 〈µν|σλ〉] (8)

Pσλ
R ) ∑

R
na

R Cλa
R* Cσa

R (9)

PT ) PR + Pâ (10)

F ) PR - Pâ (11)

2Sz+1Ψsz

uhf ) ∑
S)Sz

Sz+Nâ

ωs∑
k)0

Nâ

Ck(S,Sz,n) 2s+1ψsz

k (12)
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The

where

The function [RNR-kâk| is the sum of all theNR-factor spin
function products involving theNR - k R-spin functions andk
â-spin functions; e.g., ifNR ) 3 andk ) 1, then [R2â1| ) RRâ
+ RâR + âRR. The|RkâNâ-k] are similarly defined. This leads

to [RNR-kâk|RkâNâ-k] being a sum of(NR
k )(Nâ

k ) terms each ofNR

R-spin functions andNâ â-spin functions. TheCk(S,Sz,n) and
ωs were first determined by Sasaki and Ohno.19 The expressions
for evaluatingE(2(Sz+k)+1ψsz) were derived by Harriman,20-22

and we have adopted his notation in the above discourse. The
squares of theωs are known as the weights of the components
and for a normalized wave function will sum to unity. Then,
from the definition of theωs it is easily shown that

and

The functions2(Sz+k)+1ψsz are akin to CI functions, eq 13, thus
the UHF energy contains some of the correlation energy; i.e.,
the difference between the many-body solution for the nonrela-
tivistic fixed nuclei Hamiltonian and the RHF, or ROHF, method
defines thebasis setcorrelation energy. For a complete basis,
this difference defines the correlation energy.

The Löwdin annihilator23-28 for removing the t-th spin
component is given below.

If we assumet is the leading spin contaminant, usually theS)
Sz + 1 component, then

A more complete, although more complex, approachprojects
the desired spin state from the UHF wave function.20-22,29-31

To obtain an eigenfunction ofŜ2, the Löwdin projectorÔs is
applied to eq 12, to remove all but thesspin component, where

and

The operatorÔs projects out the (2S+ 1) spin component and

the resulting pure spin state wave function can be written as a
linear combination of configuration state functions, vis.,

when the{2S+1ψsz

k } are expressed on the basis of the corre-
sponding orbitals of Amos and Hall.26

Harriman, through a great deal of tedious algebra, derived
closed formulas for the projected energy expressions,20 which
we have no desire to repeat here. Further, he proved that upon
projection the natural orbitals of the 1-matrix do not rotate and
so chose to express his energy formulas in this basis. As noted
above in the basis of the corresponding orbitals (also known as
the paired orbitals of Lo¨wdin), the unrestricted wave function
can be expressed as a linear combination of restricted determi-
nants, obviously a far more transparent basis in which to
understand the result of applying the projector. The correspond-
ing orbitals can be generated in several different ways; we have
found that generating them via the pairing theorem of Lo¨w-
din30,31and constructing the natural orbitals of the 1-matrix from
them yields a set of natural orbitals that both properly reflects
the spatial symmetry of the system and possesses the proper
phasing, a problem first noted by Phillips and Schug.32 Our use
of any other method to obtain the natural orbitals of the 1-matrix
inevitably leads to problems, especially for systems of high
spatial symmetry, thus rendering whatever utility there was in
the alternate method useless. In the Appendix, we demonstrate
Löwdin’s pairing theorem by using it to generate the paired (or
corresponding) orbitals.

In practice, problems arising from spatial symmetry, near
degeneracies in the 1-matrix, and machine numerical precision
have caused sufficient problems in the past to discourage the
general use of this method. Machine precision problems must
be trapped and dealt with as they arise. Problems arising due
to spatial degeneracies and near degeneracies in the 1-matrix
were successfully met by using the pairing theorem.

Computational Algorithm

(1) Converge UHF equations to 1 part in 1012 with respect
to the energy. (This is important for both reasons of numerical
stability and to ensure a minimum of spin contamination.)

(2) Form the corresponding orbitals via the algorithm
described in the Appendix.

(3) Construct the natural orbitals of the 1-matrix from the
corresponding orbitals.23 (This ensures their being properly
phased36 and resolves the problems commonly encountered
when treating molecular systems of high spatial symmetry.)

(4) Use the equations given in ref 23 or 36 to compute the
weights and energies for each spin state of interest. (Equation
16 can be used as a check of internal consistency when the
weights and energies of all spin states are computed.)

Some Examples

The projected UHF model delineated above has been
programmed within the quantum chemical models that are
present in the ZINDO program system.33 The examples taken
below were obtained using the INDO/S model Hamiltonian.34-38

Model Ferridoxins. We examine the case of the 2-Fe model
ferrodoxin39 shown in the structure above Table 1. TheSz ) 5
UHF calculation (corresponding to all 10R-spin electrons singly
occupying the 10 d-orbitals, orferromagnetically(FM) coupled)
is nearly pure undectet (2S+ 1 ) 11), as can be seen in Table

2S+1ψsz

k ) N|θ1θ2 . . . θNR
θh1θh2 . . . θhNâ

|[RNR-kâk|RkâNâ-k]
(13)

N ) [(NR + Nâ)!(NR

k )(Nâ

k )]-1/2

(14)

〈Ŝ2〉uhf ) ∑
k)0

Nâ

ωsz+k
2 (Sz + k)(Sz + k + 1) g Sz(Sz + 1) (15)

E(2Sz+1Ψsz

uhf) ) ∑
k)0

Nâ

ωsz+k
2 E(2(Sz+k)+1ψsz

) e E(2Sz+1Ψsz

rhf) (16)

Ât
s )

Ŝ2 - t(t + 1)

s(s + 1) - t(t + 1)
(17)

Ât
s 2Sz+1Ψsz

uhf ) (1)2Sz+1Ψsz
CSz

+ (0)2Sz+3Ψsz
CSz+1 +

(-1/2(Sz + 2))2Sz+5Ψsz
CSz+2 + . . . (18)

Ôs ) ∏
t*s

Ât
s (19)

Ôs
2 ) Ôs

Ŝ2Ôs ) S(S+ 1)Ôs

Ôs
2Sz+1Ψsz

uhf ) ∑
k)0

Nâ

Ck(S,Sz,n) 2S+1ψsz

k (20)
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1. The pure undectet comprises 0.9993 of the wave function,
and the〈Ŝuhf

2 〉 expectation value is 30.008. If the UHF wave
function were a pure undectet, this value would be identically
30. The lowest energy multiplet for this system that we calculate
using the INDO/S model is, however, the singlet case. This is
obtained from projecting out theSz ) 0 antiferromagnetic (AF)
case, with allR-spin electrons localized to one Fe(III) ion and
all â-spin electrons localized to the other. (Note that the
“singlet”, i.e.,Sz ) 0, UHF wave function is mostly aS) 1, Sz

) 0 triplet.) The AF case cannot be considered a pure spin state,
nor does it even approximate one. The expectation value〈Ŝ2〉
of a pure AF coupling would be 5, which is close to the 4.72
value actually calculated for the UHF wave function. At the
bottom of Table 1, the exact projection of the AF wave function,
vis.,

(in which the first five MO’s are essentially Fe d-orbitals
localized to the first iron atom and are represented byR-spin
orbitals, and the next five MO’s areâ-spin orbitals localized
essentially to the second iron atom) is compared against the
undectet, the nine nonets, etc. A comparison of these coefficients
with those actually calculated indicates a slight bias in the UHF
function to lower multiplicities than that expected in the ideal
AF case, consistent with the fact that the calculated〈Ŝ2〉 value
is less than 5. This is likely due to some covalency in the
d-orbitals, and these more delocalized orbitals have a greater
tendency to electron pair. In general, the UHF energy is most
reliable for those states of highest multiplicity for a given
number of electrons in a set number of open-shell orbitals.
Accordingly, the calculated〈Ŝ2〉 value deviates more from the
Sz(Sz + 1) value the smallerSz becomes.

As shown in Table 1, the prediction is that the ground state
of this model ferridoxin isdiamagnetic,or singlet. While in

general the UHF energy for the highest multiplicity is a good
estimate (the projection only lowers the energy by 30 cm-1 in
this case) this does not necessarily imply that the wave function
is good, though the〈Ŝ2〉 value does suggest that this is so in
this particular case. There are two additional observations to
be gleaned from this table. The first is that the tridectet is of
much higher energy, as it requires the uncoupling of spins on
the sulfur ligands. Second, only the AF (minimum multiplicity)
and FM (maximum multiplicity) seem consistent in their
prediction. This is because all other multiplicities involve the
loss of one-center exchange, and this raises the energy consider-
ably. The prediction that the FM case projected from the singlet
is higher in energy than the AF case by 4840 cm-1 is consistent
with the FM calculation which produces a value of 3540 cm-1.
Finally, note that, despite the considerable spin contamination
in the AF case, the spin projection only lowers the projected
singlet by 630 cm-1. This is due to the fact that the higher
multiplicities that mix into this wave function are the weakly
coupled ones; that is, those that result from the coupling of two
isolatedS ) 5/2 Fe(III) systems.

FeS Proteins, Nitrile Hydratases.In Table 2, we examine
the magnetic predictions of several model nitrile hydratases,
the latter of which catalyze the reaction

These are rather complex molecules, as implied by the formulas
given in the table. We note that in each case the predicted spin
multiplicity agrees with that observed. In the case of ZAZNUJ,
this is high spin (5/2), and in the case of PAVDUL (Figure 2),
this is low spin (1/2). The values in this table are from three
INDO/S-PUHF calculations, one for each of the threeSz values,
1/2, 3/2, and5/2. For the two cases presented here, the unprojected
UHF result properly predicts the observed spin state (this is
not generally the case), indicating that the essential physics is
inherent in the INDO/S model. This is not the case for ab initio
UHF wave functions and is the major reason for their poor
description of spin systems such as these. The projection is
usually necessary to predict the observed〈Ŝ2〉 values.40 (The
chemistry of these complexes is discussed in detail in ref 40,
and many more examples are reported.)

Single Sided Annihilation. Single sided annihilation is an
attractive alternative to fully projected unrestricted Hartree-

TABLE 1: Spin Components (“Weights”) for 2-Fe Model
Ferredoxin Obtained from UHF Calculations in Italicsa

Sz

2S+ 1 5 4 3 2 1 0

1 w 0.18
E 0.00
3 w 0.49 0.37
E 26.1 0.25
5 w 0.81 0.36 0.29
E 22.5 27.6 0.76
7 w 0.88 0.18 0.13 0.13
E 13.5 22.9 30.5 1.60
9 w 0.93 0.11 0.01 0.02 0.03
E 5.76 27.7 25.2 36.1 2.86
11w 0.9993 0.07 0.00 0.00 0.00 0.00
E 3.54 24.6 45.6 33.2 79.6 4.84
13w 0.0007 0.00 0.00 0.00 0.00 0.00
E 56.7 82.1 105.0 97.7 126.2 64.8

〈S2〉 30.008 20.66 12.95 7.26 5.11 4.72
Sz(Sz + 1) 30 20 12 6 2 0
E(UHF) 3.57 6.48 15.3 22.8 27.2 0.63

〈S2〉AF ) 5
AF ) 0.160 (singlet)+ 0.357 (triplet)+ 0.298(quintet)

a The second line presents relative energies in 1000 cm-1 (1000 cm-1

) 2.86 kcal/mol).

1ΨSz)0
AF ) |φ1

RR(1)φ2
RR(2)φ3

RR(3)φ4
RR(4)φ5

RR(5) ×
φ6

ââ(6)φ7
ââ(7)φ8

ââ(8)φ9
ââ(9)φ10

â â(10)| (21)

TABLE 2: Relative Energies of the Fe-S Model Proteins
for Nitrile Hydratase (NHase) R-CN + H2O f
R-CO-NH2 in kJ/mol (from ref 35)

DABMUO, C16H14ClFeN2S2 (S(exp)) 3/2)
chloro[N,N′-ethylenebis(thiosalicylideneiminato)] Fe(III)

S) 1/2 67.2
S) 3/2 0.0
S) 5/2 37.3

PAVDUL, C39H54N3S3Fe (S(exp)) 1/2)
(1,4,7-tris(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane)Fe(III)

S) 1/2 0.0
S) 3/2 50.1
S) 5/2 72.7

ZAZNUJ, FeS3N3C25H24 (S(exp)) 5/2)
[Fe{III }(N(CH2-o-C6H4S)3)(1-Me-imid)]

S) 1/2 110.8
S) 3/2 22.6
S) 5/2 0.0

ZEKRIG(+), C16H33N5S2ClFe (S(exp)) 1/2)
bis(6-amino-2,3-dimethyl-4-azahex-3-ene-2-thiolato)Fe(III) chloride

S) 1/2 0.0
S) 3/2 59.1
S) 5/2 96.6

R-CN + H2O f R-CO-NH2
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Fock (eq 17) as it is simpler and much easier to implement,
considerably faster in execution time, and is readily available
within the INDO model and has been for some time.28 We
examine this method for PAVDUL (Figure 2), one of the model
nitrile hydratases of Table 2. In this case, the expectation value
〈Ŝ2〉 ) 2.926 for the UHF solution withSz ) 1/2, showing a
rather large amount of spin contamination for a function with
desired〈Ŝ2〉 ) 0.75. Single sided annihilation and renormaliza-
tion, a procedure which eliminates the quartet component〈Ŝ2〉
) 15/4, yields a value of〈Ŝ2〉 ) 8.526, indicating that the doublet
remains a minor component of the wave function that results.
The energy obtained, a transition value rather than an expecta-
tion value, is 1837 kJ/mol below the PUHF value, and the
estimated error from second-order perturbation theory is 0.226919-
(E(S) - E(S+ 2)), rendering this value meaningless. An analysis
of this particular case appears in Table 3. Note the high spin
contamination; the UHF wave function is only 53% doublet.
Single sided annihilation of the next highest component is a
useful procedure only when the wave function shows but little

spin contamination, but as seen in Table 4 for PAVDUL even
this is not always the case. This is somewhat disappointing, as
after the annihilation and renormalization the wave function is
95.8% sextet (Sz ) 5/2). This is not only disappointing, it is
surprising!

Ni Clusters. As a final example, we examine the energetics
of Ni6 clusters. Table 5 summarizes our findings for this cluster
at three different geometries:Oh symmetry at the observed bulk
distance of 2.49 Å, the INDO/1 optimized geometry constrained
to Oh symmetry, and the INDO/1 optimized Jahn-Teller
distorted geometry ofD4h symmetry.41 The INDO/S-PUHF
calculations are as described above; the multireference CI
(MRCI) calculations generate single excitations from all sym-
metry-equivalent configuration state functions for each spin and
space assignment and are reasonably time-consuming calcula-

Figure 2. Structure of “PAVDUL”, 1,4,7-tris(4-tert-butyl-2-mercap-
tobenzl)-1,4,7-triacyclononane Fe(III).

TABLE 3: Examination of the UHF Wave Function for
PAVDUL; See Table 2 and Figure 2a

S weight energy (au)

0.5 0.53041104 -344.975524
1.5 0.34766091 -344.905468
2.5 0.10235863 -344.819873
3.5 0.01749960 -344.723620
4.5 0.00192041 -344.617574
5.5 0.00014193 -344.500787
6.5 0.00000722 -344.370987
7.5 0.00000025 -344.224453

unprojected〈Ŝ2〉 ) 2.925766
E(UHF) ) -344.930067

Results for Half-Projection
expectation value of the total spin operator,S(S+ 1) 0.750000
〈Ŝ2〉 of the UHF wave function 2.925766
expectation value of the annihilated wave function 8.525535
estimated weight of the annihilatedS) 3/2 component 0.402225
estimated weight of theS) 5/2 component 0.057898
energy of the UHF wave function -344.930067
energy of the one sided annihilated wave function -345.647713

a The reference calculation hasSZ
UHF ) 1/2.

TABLE 4: Examination of the UHF Wave Function for
PAVDUL; See Table 2 and Figure 2a

S weight energy (au)

2.5 0.77636908 -344.947771
3.5 0.19065137 -344.870643
4.5 0.02969825 -344.781132
5.5 0.00305902 -344.679032
6.5 0.00021207 -344.562230
7.5 0.00000990 -344.426477
8.5 0.00000031 -344.264844

unprojected〈Ŝ2〉 ) 10.651375
E(UHF) ) -344.927206

Results for Half-Projection
expectation value of the total spin operator,S(S+ 1) 8.750000
〈Ŝ2〉 of the UHF wave function 10.651375
expectation value of the annihilated wave function 10.708589
estimated weight of the annihilatedS) 7/2 component 0.193270
estimated weight of theS) 9/2 component 0.026896
energy of the UHF wave function -344.927206
energy of the one sided annihilated wave function -345.070011

a The reference calculation hasSZ
UHF ) 5/2.

TABLE 5: Relative Valence Energies (eV) Calculated for
Ni6 Structures from PUHF and MRCIS Calculations at the
Bulk Geometry (Oh, R ) 2.49 Å), Symmetry Constrained
Optimized Geometry (Oh, R ) 2.36 Å) and the Jahn-Teller
Distorted D4h Structuresa,b

multiplicity Oh, R ) 2.49 Å Oh, R ) 2.36 Å D4h

1 1A2g
1A2g

1B1g

PUHF 0.43 (0.158) 0.63 (0.160) 0.27 (0.160)
MRCI 4.63 2.83 3.21

3 3T2u
3T2u

3B2u

PUHF 0.57 (0.407) 0.33 (0.409) 0.38 (0.408)
MRCI 3.16 1.22 1.71

5 5A2g
5A2g

5B1g

PUHF 0.27 (0.589) 0.14 (0.596) 0.22 (0.600)
MRCI 2.78 1.09 0.79

7 7A2g
7A2g

7B1g

PUHF 0.11 (0.736) 0.027 (0.746) 0.027 (0.748)
MRCI 0.95 1.14 1.12

9 9A2g
9A2g

9B1g

PUHF 0.027 (0.854) 0.0082 (0.863) 0.0054 (0.864)
MRCI 0.30 0.30 0.68

11 11Eg
11Eg

11A1g

PUHF 0.000 (0.952)* 0.000 (0.963)** 0.000 (0.963)***
MRCI 0.000 0.000## 0.000###

13 13A2g
13Eg

13B1g

PUHF 0.38 (0.994) 0.57 (0.996) 0.52 (0.997)
MRCI 0.54 1.17 1.71

a The numbers in parentheses are the weights of the given multiplicity
from the Sz) S UHF calculation.b MRCIS absolute energy values:
(#) -244.224 au; (##)-244.295 au; (###)-244.300. PUHF absolute
energy values: (*)-244.229 au; (**)-244.372 au; (***)-244.396
au. 1 au) 27.2114 eV.
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tions involving several thousand configurations in each of the
irreducible representations in the Abelian subgroupD2h.

The undectet (2S + 1 ) 11) is predicted to have the lowest
energy in all cases, although the PUHF calculations suggest that
multiplicities of 7, 9, and 11 are essentially degenerate, i.e.,
within a kcal/mol (1 hartree) 627.58 kcal/mol), with the
exception being the septet at the bulk geometry that lies 2.5
kcal/mol above the PUHF undectet. The MRCI calculations
separate the energies of the multiplets by a greater amount. In
all cases, the PUHF calculations yield a lower energy than do
the far more complex MRCI calculations. At the bulk geometry,
this difference in energy is only 3 kcal/mol, but it increases to
nearly 6 kcal/mol at the other geometries. In other words, it is
quite difficult for the ROHF-CI procedure to produce energies
as low as those easily obtained from the PUHF procedure.

Analysis indicates that the PUHF results are more systematic
than are those of the MRCI calculations in the sense that a
Heisenberg spin Hamiltonian can be fit to the results obtained
for each geometry with a standard deviation of 0.002 hartree
compared to 0.02 hartree for each MRCI structure. Of curiosity
is the observation that these fits suggest that the lowest
multiplicity predicted from the PUHF calculations is the septet;
the undectet remains the lowest energy from the fits to the MRCI
calculations, although the nonet becomes nearly degenerate.

For comparison, DFT calculations on the distortedD4h

structure predict that a multiplicity of 7 lies lowest,42 but density
functional theory has recently been shown to favor lower
multiplicities.43 CASSCF/CI calculations at the bulk geometry
seem to also suggest that a septet lies lowest in energy.44

Conclusions

We have re-examined the projected UHF procedure as an
inexpensive tool to obtain pure spin states, following the
procedure originally delineated by Harriman and stabilized by
use of the pairing theorem of Lo¨wdin. We develop a robust
procedure that is very capable of yielding correctly the spin
multiplicities of open-shell systems. The energies we obtain are
difficult to match using ROHF-CI procedures. Although the
wave functions we obtain “seem” to be much improved over
that of the UHF model, we still have very little experience with
the performance of this model with respect to other observables.

Appendix: The Paired Orbitals of Lo1wdin

Let us consider the two sets of basis functions

of ordermandn, respectively, withm g n. Further, we assume
the sets to be orthonormal. Then one has the overlap integral
matrixes

Theorem. There exists two unitary transformationsU andV
having the property that if

then the overlap matrices, i.e.,

are going to be diagonal, leading to a naturalpairing of the
basis functions.

Consider the two product matricesSS† andS†S, which are
Hermitian and of dimensionm × m andn × n, respectively.
(If m > n, thenSS† has at leastm - n eigenvalues equal to
zero.) Then there exists a unitary matrixV such that

whereu is diagonal, and for the sake of simplicity assumed to
be of dimensionn × n (i.e., no vanishing eigenvalues). Alsouk

g 0 sinceS†S is positive definite.
Now let us define

where

and

If for convenience we define

then

and

which is the pairing theorem. (The pairing theorem is a special
case of the mirror theorem.20,25,26)

The value of the overlapTr ranges between 0< Tr e 1. If Tr

) 1, thena′r ) b′r and corresponds to a doubly occupied orbital
with no paring properties. Those orbital pairs havingTr < 1
are referred to as the corresponding orbitals of Amos and Hall21

or the paired orbitals of Lo¨wdin. Them- n extra eigencolumns
of SS†, associated with the-n zeroeigenvalues, are of zero
length.
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